Counting-Übungen (SS4)

Felix Rohrer

Grundlagen des Zählens

▼ 1. KR, Abschnitt 5.1, Aufgabe 7:

Wieviele Monogramme (oder Benutzernamen) mit 3 Buchstaben gibt es?

 $[AnzBuchstabenImAlphabet]^{[AnzStellen]}$

> restart

> 26³

17576 (1.1)

Es gibt 17'576 Monogramme

▼ I. KR, Abschnitt 5.1, Aufgabe 15:

Wieviele Worte mit höchstens 4 Buchstaben gibt es?

> restar

Wörter mit 1 Zeichen + Wörter mit 2 Zeichen + Wörter mit 3 Zeichen + Wörter mit 4 Zeichen + Leererstring !!!

$$> 26^1 + 26^2 + 26^3 + 26^4 + 1$$

475255 (2.1)

Es gibt 475'255 Worte

2. KR, Abschnitt 5.1, Aufgabe 21a-d:

a)

Wieviele ganze Zahlen zwischen 100 und 999 (beide Zahlen inklusive) gibt es <u>die durch 7 teilbar sind?</u>

Anzahl Zahlen zwischen 100 und 999 (inkl. beide Zahlen): 999 - 100 + 2

Wie oft ist dies durch 7 Teilbar: /7

Resultat abrunden

> restart

$$\frac{(999 - 100 + 1)}{7}$$

 $\frac{900}{7}$ (3.1.1)

• floor(evalf(%))

128 (3.1.2)

Es gibt 128 Zahlen

b)

Wieviele ganze Zahlen zwischen 100 und 999 (beide Zahlen inklusive) gibt es <u>die ungerade sind?</u>

Anzahl Zahlen zwischen 100 und 999 (inkl. beide Zahlen): 999 - 100 + 2 ungerade Zahlen: /2

Resultat abrunden

> restart

$$\frac{(999-100+1)}{2}$$

Es gibt 450 Zahlen

(c)

Wieviele ganze Zahlen zwischen 100 und 999 (beide Zahlen inklusive) gibt es <u>deren drei</u> <u>Dezimalstellen gleich sind</u>?

"Schnappszahlen" sind gesucht: 111, 222, 333...

$$100 \cdot x + 10 \cdot x + x$$

> restart

>
$$seq(x \cdot 100 + x \cdot 10 + x, x = 1..9)$$

111, 222, 333, 444, 555, 666, 777, 888, 999 (3.3.1)

Es gibt 9 Zahlen

⁷ d)

Wieviele ganze Zahlen zwischen 100 und 999 (beide Zahlen inklusive) gibt es die nicht durch 4 teilbar sind?

Alle Zahlen zwischen 100 und 999 (inkl beide Zahlen) - die Zahlen die zwischen 100 und 999 durch 4 teilbar sind

> restart

>
$$all := 999 - 100 + 1$$

 $\Rightarrow div4 := floor\left(\frac{all}{4}\right)$

$$div4 := 225$$
 (3.4.2)

> all — div4

Es gibt 675 Zahlen

73. KR, Abschnitt 5.1, Aufgabe 23a:

Wieviele Zahlen mit 3 Dezimalstellen gibt es, die keine Ziffer dreimal enthalten?

[(Alle Zahlen mit 3 Ziffern (Ziffer: 0..9)) - (alle Zahlen wo die drei Ziffern gleich sind) $10^3 - 10^1$ 990

(4.1)

Es gibt 990 Zahlen

▼ 4. KR, Abschnitt 5.1, Aufgabe 3:

Eine Multiple-Choice Prüfung enthält 10 Fragen und jeweils 4 mögliche Antworten.

wieviele Möglichkeiten hat ein Student, diese Prüfung zu "lösen", wenn er jede Frage beantwortet?

10 Fragen mit jeweils 4 mögliche Antworten => 10 Position mit 4 Optionen

1048576

(5.1.1)

_Es gibt $4^{10} = 1'048'576$ Möglichkeiten

b)

Wieviele Möglichkeiten hat ein Student, diese Prüfung zu "lösen", wenn er auch Antworten _auslassen kann?

[10 Positionen mit 5 Optionen

> 5¹⁰

9765625 (5.2.1)

Es gibt $5^{10} = 9'765'625$ Möglichkeiten

Schubfachprinzip

II. KR, Abschnitt 5.2, Aufgabe 5:

Zeigen Sie, dass sich in jeder Menge von 5 ganzen Zahlen (mindestens) zwei befinden, die bei Division durch 4 gleichen Rest haben.

```
Jede natürliche Zahl lässt sich als ein Vielfaches von n schreiben: (k \cdot n, k \in \mathbb{N}) Dezimaldarstellung: 1 = 1, 2 = 11, 3 = 111, 4 = 1111, 5 = 11111, usw. Bei der Division durch 4 (n = 4) gibt es 4 verschiedene Reste (0,1,2, \text{ oder } 3) Zahl 1: Z_1 \Rightarrow 1 = 0 \cdot 4 + 1 (Rest: 1) Zahl 2: Z_2 \Rightarrow 11 = 2 \cdot 4 + 3 (Rest: 3) Zahl 3: Z_3 \Rightarrow 111 = 27 \cdot 4 + 3 (Rest: 3) Zahl 4: Z_4 \Rightarrow 1111 = 277 \cdot 4 + 3 (Rest: 3) Zahl 5: Z_5 \Rightarrow 11111 = 2777 \cdot 4 + 3 (Rest: 3) ... Zahl n+1: Z_{n+1} \Rightarrow 111 \dots 1 = k_1 \cdot n + r (Rest: r) Zahl n+2: Z_{n+2} \Rightarrow 111 \dots 1 = k_2 \cdot n + r (Rest: r)
```

Bei der Division durch 4 sind vier verschiedene Reste möglich.

Wenn wir 5 ganze Zahlen auswählen, müssen mindestens zwei Zahlen bei der Divison durch 4 den gleichen Rest haben.

_Schubfachprinzip: 5 Zahlen, 4 Reste => in mindestens einem "Fach" sind mehr als eine Zahl.

75. KR, Abschnitt 5.2, Aufgabe 13a:

Beweisen Sie: Wählt man 5 natürliche Zahlen aus den ersten 8 natürlichen Zahlen aus, so gibt es ein Paar (von diesen Zahlen) mit der Summe 9.

_Die ersten 8 natürlichen Zahlen: {1,2,3,4,5,6,7,8}

Eine Summe wird aus zwei Summanden gebildet. Somit müssen die 8 Zahlen in zwei gleichmächtige Gruppen (G_1, G_2) aufgeteilt werden. Pro Gruppe gibt es somit 4 Elemente.

Wählt man nun 5 Elemente aus, muss mindestens eine Zahl von der zweiten Gruppe sein. Es ist egal welche Zahl in welcher Gruppe ist, mindestens von einem Paar ist die Summe 9.

Bsp: G1={1,2,3,4}, G2={5,6,7,8} => 1+8, 2+7, 3+6 oder 4+5

Bsp: $G1=\{2,5,7,8\}$, $G2=\{1,3,4,6\} => 5+4, 8+1$

Permutationen und Kombinationen

6. KR, Abschnitt 5.3, Aufgabe 1:

```
Listen Sie alle Permutationen von {a, b, c} auf.

Unter einer Permutation versteht man die Veränderung der Anordnung einer Menge durch Vertauschen ihrer Elemente.

> restart

> with(combinat):

> permute([a, b, c], 3)

[[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, a, b], [c, b, a]]

[[a, b, c], [a, c, b], [b, a, c], [b, c, a], [c, b, a]]

(8.1)
```

7. KR, Abschnitt 5.3, Aufgabe 3:

```
Wieviele Permutationen von {a, b, c, d, e, f, g} enden auf a?

Anzahl Permutationen von {b, c, d, e, f, g} (weil das a am Ende stehen muss)

{b,c,d,e,f,g} = 6 Elemente

> restart

> with(combinat):

> numbperm(6)

720

Qentification of the combinat of the combination of the
```

8. KR, Abschnitt 5.3, Aufgaben 5a-c und 6a-c:

```
Berechnen Sie: P(6, 3), P(6, 5) und P(8, 1) sowie C(5, 1), C(5, 3) und C(8, 4).
P = Permutationen (versch. Anordnungen) => Variationen (z.B. Lotospiel!)
 C = Kombinationen
 Bei den Kombinationen (englisch k-combinations) wird die Reihenfolgen oder Anordnungen der
 gewählten Elemente ausser Acht gelassen
 d.h. die Stichproben {a,b,c}, {b,a,c}, {b,c,a} usw. als gleich betrachtet, so dass es für eine gegebene
 Ausgangsmenge stets weniger Kombinationen als Variationen ihrer Elemente gibt.
 P(6, 3) = Aus einer Menge mit 6 Elemente wird die Anzahl Teilmengen gesucht mit jeweils 3-
 Elementen
 C(5, 1) = Aus einer Menge mit 5 Elemente wird die Anzahl Teilmengen gesucht mit jeweils 1-
 Element (Reihenfolge der Elemente in der Teilmenge ist dabei egal)
 TI-30X: P(6, 3) \Rightarrow [6] [PRB] (nPr) [=] [3] [=]
 TI-30X: C(5, 1) \Rightarrow [5] [PRB] [\rightarrow] (nCr) [=] [1] [=]
 Maple: P(6,3) \Rightarrow \text{numbperm}(6,3) // with(combinat)
 Maple: C(5,1) => numbcomb(5,1) // with(combinat) //ACHTUNG: b != p [numbcomb()]
   restart
   with(combinat):
   numbperm(6,3)
                                             120
                                                                                             (10.1)
   numbperm(6,5)
                                             720
                                                                                             (10.2)
   numbperm(8, 1)
                                              8
                                                                                             (10.3)
   numbcomb(5, 1)
                                              5
                                                                                             (10.4)
   numbcomb(5,3)
                                              10
                                                                                             (10.5)
   numbcomb(8,4)
                                             70
                                                                                             (10.6)
 P(6,3) = 120
 P(6, 5) = 720
 P(8, 1) = 8
 C(5, 1) = 5
 C(5,3) = 10
 C(8, 4) = 70
```

9. KR, Abschnitt 5.3, Aufgabe 11a+b:

```
a)
Wieviele binäre Strings der Länge 10 enthalten genau viermal die 1?
 C(n, k) = \binom{n}{k} = Anzahl k-el. Teilmenge einer n-el. Menge (Anzahl k-Untermenge einer n-
 Wieviele "4er Kombinationen" gibt es in einer "10er Menge"?
    with(combinat) :
    numbcomb(10, 4)
                                                210
                                                                                                    (11.1.1)
 Alternativ, da C(n, k) = \binom{n}{k}
 > binomial(10, 4)
                                                210
                                                                                                    (11.1.2)
Es gibt 210 binäre Strings der Länge 10, welche genau viermal die 1 enthalten.
Wieviele binäre Strings der Länge 10 enthalten höchstens viermal die 1?
  \begin{pmatrix} 10 \\ 0 \end{pmatrix} + \begin{pmatrix} 10 \\ 1 \end{pmatrix} + \begin{pmatrix} 10 \\ 2 \end{pmatrix} + \begin{pmatrix} 10 \\ 3 \end{pmatrix} + \begin{pmatrix} 10 \\ 4 \end{pmatrix} = C(10,0) + C(10,1) + C(10,2) + C(10,3)
    restart
 > numbcomb(10, 0) + numbcomb(10, 1) + numbcomb(10, 2) + numbcomb(10, 3)
          + numbcomb(10, 4)
                                                386
                                                                                                    (11.2.1)
    binomial(10,0) + binomial(10,1) + binomial(10,2) + binomial(10,3) + binomial(10,3)
         4)
                                                386
                                                                                                    (11.2.2)
resp.
 > sum(binomial(10, n), n = 0..4)
                                                386
                                                                                                    (11.2.3)
                                                 386
                                                                                                    (11.2.4)
Es gibt 386 Strings der Länge 10, welche höchstens viermal die 1 enthalten.
```

' 10. KR, Abschnitt 5.3, Aufgabe 17:

[Wieviele Teilmengen mit mehr als 2 Elementen hat eine Menge mit 100 Elementen? Mächtigkeit einer Menge: $|X| = 2^x$ [(Alle Teilmengen) - [(Teilmenge mit 0-Elemente) + (Teilmenge mit 1-Elemente) + (Teilmenge mit 2-Elemente)] > restart > 2^{100} - (binomial(100, 0) + binomial(100, 1) + binomial(100, 2)) 1267650600228229401496703200325 (12.1) > binomial(100, 0) + binomial(100, 1) + binomial(100, 2) 5051 (12.2) Es gibt 2^{100} - 5051 Teilmengen mit mehr als 2 Elementen.

▼ 11. KR, Abschnitt 5.3, Aufgabe 19a+b:

Eine Münze wird zehnmal geworfen.

<u>a</u>)

Wieviele mögliche Ausgänge hat dieses Experiment?

Münze: Kopf oder Zahl => 2 mögliche Werte

_10 Würfe mit jeweils 2 möglichen Werte => 2^{10}

=

1024 (13.1.1)

Es gibt 1024 mögliche Versionen.

y b)

Wieviele mögliche Ausgänge, die genau dreimal Kopf enthalten, hat dieses Experiment?

Von 10 Durchgängen müssen 3 "stimmen" => C(10, 3)

> binomial(10, 3)

120

(13.2.1)

Es gibt 120 mögliche Versionen.

12. KR, Abschnitt 5.3, Aufgabe 25a-d:

Einhundert Lose, durchnumeriert von 1 bis 100, werden an 100 verschiedene Leute verkauft. Es sollen vier verschiedene Preise verlost werden. Wieviele Möglichkeiten gibt es, diese Preise zu verteilen,

a) falls man keine Einschränkung macht? 100 Lose mit 4 "richtigen" => P(100, 4) // Permutation, Reihenfolge ist wichtig! > restart with(combinat): > numbperm(100, 4) 94109400 (14.1.1)Es gibt 94'109'400 Möglichkeiten.

Lfalls die Person mit Los 47 den Hauptpreis gewinnen soll?

Hauptpreis ist fix (erste Stelle fix) => restliche Positionen: somit nur noch 99 Personen welche _sich 3 Preise aufteilen

> *numbperm*(99, 3)

941094 (14.2.1)

Es gibt 941'094 Möglichkeiten.

Lfalls die Person mit Los 47 einen der Preise gewinnen soll?

Los 47 gewinnt irgend einen Preis, für die restlichen 99 sind es noch 3 Preise Somit 4 mal die Möglichkeit von 3 Preisen für 99 Personen.

 $\rightarrow 4 \cdot numbperm(99,3)$

3764376 (14.3.1)

Es gibt 3'764'376 Möglichkeiten.

d)

Lfalls die Person mit Los 47 keinen Preis gewinnen soll?

Somit nur noch 99 Personen welche 4 Preise aufteilen.

> numbperm(99, 4)

90345024 (14.4.1)

_Es gibt 90'345'024 Möglichkeiten.

13. KR, Abschnitt 5.4, Aufgabe 3:

Berechnen Sie
$$(x + y)^6$$

> restart

> expand($(x + y)^6$)

 $x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6$

[Alternativ mittels Binomialsatz:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^{n-k} \cdot y^k$$

$$n := 6$$
 (15.2)

$$> \sum_{k=0}^{n} \binom{n}{k} \cdot x^{n-k} \cdot y^k$$

Alternativ mittels Binomialsatz:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^{n-k} \cdot y^k$$

$$> n := 6$$

$$> \sum_{k=0}^n \binom{n}{k} \cdot x^{n-k} \cdot y^k$$

$$x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6$$

$$[(x+y)^6 = x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6]$$
(15.3)

14. KR, Abschnitt 5.4, Aufgabe 9:

Bestimmen Sie den Koeffizienten von $x^{101}y^{99}$ in $(2x-3y)^{200}$

Binomialsatz:
$$(x + y)^n = \sum_{k=0}^n \binom{n}{k} \cdot x^{n-k} \cdot y^k$$

$$\begin{bmatrix} (2 \cdot x - 3 \cdot y)^{200} = \sum_{k=0}^{200} {200 \choose k} \cdot x^{200 - k} \cdot y^k \\ x : 200 - k = 101 \implies k = 99 \text{ resp. y: } k = 99 \\ \text{Der Koeffizient lautet: } - {200 \choose 99} \cdot 2^{101} \cdot 3^{99} \end{bmatrix}$$

$$x: 200 - k = 101 \implies k = 99 \text{ resp. y: } k = 99$$

Der Koeffizient lautet:
$$-\left(\frac{200}{99}\right) \cdot 2^{101} \cdot 3^{90}$$

III. KR, Abschnitt 5.4, Aufgabe 23:

Zeigen Sie, dass für alle positiven ganzen Zahlen n und k die folgende Relation gilt:

$$\binom{n+1}{k} = \frac{n+1}{k} \cdot \binom{n}{k-1}$$

Nutzen Sie diese Identität, um eine rekursive Definition der Binomialkoeffizienten zu konstruieren.
$$\frac{(n+1)!}{k! \cdot ((n+1)-k)!} = ? = \frac{n+1}{k} \cdot \frac{n!}{(k-1)! \cdot (n-(k-1))!}$$

$$\frac{(n+1)!}{k! \cdot (n-k+1)!} = ? = \frac{(n+1) \cdot n!}{k \cdot (k-1)! \cdot (n-(k-1))!}$$

Zwischenrechnungen:

$$(n+1) \cdot n! = (n+1)!$$

 $k \cdot (k-1)! = k!$
 $(n-(k-1)) = (n-k+1)$

$$\frac{(n+1)!}{k! \cdot (n-k+1)!} = \frac{(n+1)!}{k! \cdot (n-k+1)!}$$
 (wahr)

$$\frac{(n+1)!}{k! \cdot (n-k+1)!} = \frac{(n+1)!}{k! \cdot (n-k+1)!} \quad (wahr)$$

▼ 15. KR, Abschnitt 5.5, Aufgabe 1:

Auf wieviele Arten können 5 Elemente aus einer Menge von 3 Elementen ausgewählt werden, wenn die Reihenfolge berücksichtigt wird und Wiederholungen erlaubt sind?

=> Permutation mit Wiederholung
> 3⁵

243 (18.1)

Es gibt 243 Möglichkeiten.

▼ 16. KR, Abschnitt 5.5, Aufgabe 7:

Auf wieviele Arten können 3 Elemente aus einer Menge von 5 Elementen ausgewählt werden, wenn Ldie Reihenfolge nicht berücksichtigt wird und Wiederholungen erlaubt sind?

$$n := 5$$
; $k := 3$

$$n := 5$$
 $k := 3$ (19.1)

$$numbcomb(n+k-1,k)$$

Es gibt 35 Möglichkeiten.

17. KR, Abschnitt 5.5, Aufgabe 13:

Ein Buchhändler hat 3000 Kopien eines Buches. Wieviele Möglichkeiten gibt es, diese Bücher in seinen drei Filialen zu lagern, wenn die einzelnen Bücher nicht unterscheidbar sind?

```
3000 \text{ Kopien} \Rightarrow n
3 Filialien => k
*****.* | **... * | ***....*
3000 Sterne
3-1 = 2 Striche
=> n = 3000 + 2 (Total Sterne + Striche)
=> k = 2
 (3002)
   restart
> with(combinat):
> n := 3000;
    k := 3
                                            n := 3000
                                              k := 3
                                                                                                   (20.1)
\rightarrow numbcomb(n+k-1, n)
                                             4504501
                                                                                                   (20.2)
```

Es gibt 4'504'501 Möglichkeiten.

18. KR, Abschnitt 5.5, Aufgabe 15a-c:

Es gibt 1'365 Möglichkeiten.

a)

Wieviele Lösungen hat die Gleichung $x_1 + x_2 + x_3 + x_4 + x_5 = 21$ wobei x_1 für i = 1, 2, 3, 4, 5 eine nichtnegative ganze Zahl ist, mit

```
*** | **...* | **...* | *...* | **...*

Kombination mit Wiederholung

k: 20 "Sterne" (21 - 1 = 20, da 1 Stern fix ist)
_n: 5 "Striche" (5 Kästchen)
 > restart
with(combinat):
 > n := 5; k := 20
                                                             n := 5
                                                            k := 20
                                                                                                                                  (21.1.1)
                                                             10626
                                                                                                                                  (21.1.2)
Es gibt 10'626 Möglichkeiten.
x_i \ge 2 \text{ für } i = 1, 2, 3, 4, 5
An jeder Position sind mindestens 2 Sterne!
k: 21 - (5 \cdot 2) = 11 (da 2 Sterne pro Position Fix sind)
n: 5 (noch immer 5 Variablen)
> restart; with(combinat):
> n := 5; k := 11
                                                             n := 5
```

k := 11

1365

(21.2.1)

(21.2.2)

$$\boxed{0 \le x_1 \le 10}$$

An der ersten Position sind zwischen 0 und 10 Sterne

Alle Möglichkeiten mit 0 Sterne, + mit 1 Stern + mit 2 Sterne, ... + mit 10 Stern an der ersten Position

=> Die erste Position ist fix, somit müssen die restlichen nur noch auf 4 "Kästchen" verteilt werden (n=4 => n-1 weil es 4 Kästchen, resp. eben 4-1 Striche sind)

$$> n := 4$$

$$n := 4$$
 (21.3.1)

$$\sum_{k=0}^{10} {n-1+(21-k) \choose n-1}$$

Es gibt 11'649 Möglichkeiten.

' IV. KR, Abschnitt 5.5, Aufgabe 29:

Wieviele verschiedene binäre Strings können gebildet werden, wenn ein String stets mit einer 1 beginnen muss, ausserdem stets genau drei weitere 1 Bits enthalten muss, stets genau zwölf 0 Bits enthalten muss und jedem 1 Bit mindestens zwei 0 Bits folgen müssen?

```
Fix: 100 100 100 100 Rest/Frei: 0000
```

Es müssen 4 0-Bits auf 4 Positionen verteilt werden.

_Kombination mit Wiederholung

```
> restart
```

> with(combinat):

$$n := 4;$$
 $k := 4$

$$n := 4$$
 $k := 4$ (22.1)

$$> numbcomb(n+k-1,k)$$

Es gibt 35 Möglichkeiten.

19. KR, Abschnitt 5.5, Aufgabe 51:

Wieviele Möglichkeiten gibt es, 6 unterscheidbare Objekte in 4 ununterscheidbare Fächer zu verteilen, so dass jedes der Fächer mindestens ein Objekt enthält?

Möglichkeit 1: [2] [2] [1] [1] => 20 Möglichkeiten

Möglichkeit 2: [3] [1] [1] [1] => 45 Möglichkeiten

Es gibt 65 Möglichkeiten.